Review
Waves and Sound
Printer Friendly Version
Resource Lessons
Fundamentals of Waves
Waveform and Vibration Graphs
Vibration Graphs
(prelude to Pendulum Lab)
Interference of Waves
Standing Waves
Barrier Waves, Bow Waves, and Shock Waves
Doppler Effect
Fundamentals of Sound
Resonance in Pipes
Beats
Decibels
Labs
Period of a Simple Pendulum
Interference Shading
Speed of Sound in Air
Worksheets
Wave Vocabulary
Pendulum Lab Review
Waveform and Vibration Graphs #1
Waveform and Vibration Graphs #2
Fixed and Free Reflections
Standing Wave Patterns #1
Standing Wave Patterns #2
Standing Wave Patterns #3
Standing Wave Patterns #4
CP: Shock Waves
Practice with the Doppler Equations
CP: Waves and Vibrations
Sound Vocabulary
Speed of Sound
Practice with Resonance in Pipes
More Practice with Resonance in Pipes
Beats
CP: Sound
Textbook Assignments
25A
25B
25C
25D
25E
25F
26A: Introduction to Sound
26B: Speed of Sound
26C: Resonance of Sound
26D: Beats
26E: Decibels
NextTime Questions
Polarized Sunglasses
Standing Waves
Shock Cone
Concert
Light vs Sound Waves
Sound Waves
Vocabulary
wave
v
w
= fλ
mechanical
non-mechanical
longitudinal
radio waves vs sound waves
damped
heat
compression
rarefaction
amplitude (pressure/density)
point source
frequency (f)
hertz
kilohertz
megahertz
vibration
period (T)
equilibrium position
wavelength (λ)
relationship between frequency and wavelength
relationship between frequency and period
human range of frequencies
infrasonic
ultrasonic
intensity, decibels
interference
beats
beat pitch
beat frequency
constructive
destructive
antinodes (A)
nodes (N)
loops
resonance
forced vibration
natural frequency
properties of open pipes
properties of closed pipes
harmonics
overtones
standing waveform for an open water column
reflection
echo
reverberation
speed of sound (dry air)
speed of sound increases with the medium's
rigidity, temperature, humidity
Formulas
v
w
= fλ
d = rt
sound level
dB to power
take the difference in the decibels, divide that difference by 10,
relationship between the original sound levels equals 10
x
power
beats
beat frequency = |f
2
- f
1
|
beat pitch = ½(f
1
+ f
2
)
speed of sound in dry air
v
w
= 331 + 0.6T
open-closed pipe
for the fundamental, A-N
L
pipe
= ½ loop = ¼λ
open-open pipe
for the fundamental, A-N-A
L
pipe
= 1 loop = ½λ
Related Documents
Lab:
Labs -
Directions: Constructive and Destructive Interference
Labs -
Doppler Effect: Source Moving
Labs -
Frequency of Vibrating Strings
Labs -
Illuminance by a Light Source
Labs -
Inertial Mass
Labs -
Interference Shading
Labs -
Pipe Music
Labs -
Relationship Between Tension in a String and Wave Speed
Labs -
Relationship Between Tension in a String and Wave Speed Along the String
Labs -
Ripple Tank Checklists
Labs -
Ripple Tank Checklists
Labs -
Ripple Tank Sample Solutions
Labs -
Ripple Tank Student Involvement Sheet
Labs -
Simple Pendulums: Class Data
Labs -
Simple Pendulums: LabPro Data
Labs -
Speed of a Wave Along a Spring
Labs -
Speed of Sound in Air
Labs -
Speed of Sound in Copper
Labs -
Video: Law of Reflection
Labs -
Video: Law of Reflection Sample Diagram
Resource Lesson:
RL -
Barrier Waves, Bow Waves, and Shock Waves
RL -
Beats: An Example of Interference
RL -
Interference of Waves
RL -
Interference: In-phase Sound Sources
RL -
Introduction to Sound
RL -
Law of Reflection
RL -
Physical Optics - Thin Film Interference
RL -
Resonance in Pipes
RL -
Resonance in Strings
RL -
Ripple Tank Video Guides
RL -
SHM Equations
RL -
Simple Harmonic Motion
RL -
Sound Level Intensity
RL -
Speed of Waves Along a String
RL -
The Doppler Effect
RL -
Vibrating Systems - Simple Pendulums
RL -
Vibration Graphs
RL -
Wave Fundamentals
RL -
Waveform vs Vibration Graphs
REV -
Orbitals
Review:
REV -
Chapter 26: Sound
REV -
Honors Review: Waves and Introductory Skills
REV -
Physics I Review: Waves and Introductory Skills
REV -
Sound
REV -
Waves and Sound
Worksheet:
APP -
Echo Chamber
APP -
The Dog-Eared Page
CP -
Light Properties
CP -
Reflection
CP -
Shock Waves
CP -
Sound
CP -
Waves and Vibrations
NT -
Apparent Depth
NT -
Atmospheric Refraction
NT -
Concert
NT -
Light vs Sound Waves
NT -
Shock Cone
NT -
Sound Waves
NT -
Standing Waves
WS -
Beats
WS -
Beats, Doppler, Resonance Pipes, and Sound Intensity
WS -
Counting Vibrations and Calculating Frequency/Period
WS -
Doppler - A Challenge Problem
WS -
Doppler Effect
WS -
Fixed and Free-end Reflections
WS -
Fundamental Wave Terms
WS -
Illuminance 1
WS -
Illuminance 2
WS -
Interference: In-phase Sound Sources
WS -
Lab Discussion: Inertial and Gravitational Mass
WS -
More Practice with Resonance in Pipes
WS -
More Practice with the Doppler Practice
WS -
Practice with Resonance in Pipes
WS -
Practice with the Doppler Effect
WS -
Practice: Speed of a Wave Along a String
WS -
Pulse Superposition: Interference
WS -
Ripple Tank Review
WS -
Sound Vocabulary
WS -
Speed of Sound
WS -
Speed of Sound (Honors)
WS -
Standing Wave Patterns #1
WS -
Standing Wave Patterns #2
WS -
Standing Wave Patterns #3
WS -
Standing Wave Patterns #4
WS -
Vibrating Systems - Period and Frequency
WS -
Wave Phenomena Reading Guide
WS -
Wave Pulses
WS -
Waveform and Vibration Graphs #1
WS -
Waveform and Vibration Graphs #2
TB -
25A: Introduction to Waves and Vibrations
TB -
25B: Vibrations and Waves
TB -
25C: Wave Speed
TB -
25D: Interference
TB -
25E: Doppler
TB -
25F: Doppler Effect (continued)
TB -
26B: Speed of Sound
TB -
26C: Resonance
TB -
26D: Beats
TB -
26E: Decibels
TB -
27A: Light Properties
TB -
Decibels and Sound Intensity #1
TB -
Decibels and Sound Intensity #2
TB -
Interference Re-examined
TB -
Refraction Phenomena Reading Questions
TB -
Sound: Mixed Practice
TB -
Waves and Vibrations
PhysicsLAB
Copyright © 1997-2024
Catharine H. Colwell
All rights reserved.
Application Programmer
Mark Acton