Resource Lesson
Interference: In-phase Sound Sources
Printer Friendly Version
Whether a listener hears
maximum, constructive interference, a LOUD signal, or
minimal, destructive interference, a WEAK signal
depends on the
e
xtreme
p
ath
d
ifference, or
EPD
, between the waves arriving at his position from each of two in-phase, coherent sound sources.
EPD = |L
1
- L
2
|
LOUD
constructive
WEAK
destructive
mλ
½(2m - 1)λ
where m
{0, 1, 2, 3, ..... }
for constructive interference and
m
{1, 2, 3, ..... }
for destructive interference.
Interference Physlet
Let's first examine a situation illustrating constructive interference.
Shown below are two in-phase, coherent sound sources. This fact that each source emits the same wavelength can be verified by noting that the distance from a crest/compression to its next crest/compression is the same for both sources. That the sources are coherent can be readily seen by the fact that the sources emit their waves in unison - both release a trough, then a crest, then a trough, and so on.
If "purple" wavefronts represent troughs/rarefactions and "teal" wavefronts represent crests/compressions, then point P is four wavelengths from the left source and three wavelengths from the right source. P would therefore be located in an antinode and a listener standing at point P would hear a LOUD signal.
More simply, if the extreme path difference, EPD, between the two sources is a multiple of whole number of wavelengths, then P is in a region of constructive interference and a listener located at P would hear a LOUD, strong signal.
EPD = |L
1
- L
2
|
EPD = |4λ - 3λ|
EPD = 1λ
Consequently standing at P a listener would receive a LOUD, maximum signal.
Now consider a new situation illustrating destructive interference.
In this case, point Q is three wavelengths from the left source but three and one-half wavelengths from the right source. Q would therefore be located in a nodal region and a listener standing at Q would hear minimal sound, a WEAK signal.
More simply, if the extreme path difference, EPD, between the two sources is a multiple of an odd half-wavelength, then Q is in a region of destructive interference and a listener located at Q would hear a WEAK signal.
EPD = |L
1
- L
2
|
EPD = |3λ - 3½λ|
EPD = ½λ
Consequently standing at Q a listener would hear a WEAK, minimal signal.
Practice
Two loud speakers are facing each other at opposite ends of a room. They are in-phase and emit tones having the exact same frequency of 68 hz. If needed, you may use the speed of sound to be 340 m/sec.
If the distance between the speakers is 15 meters, find all positions where a detector could be placed and receive a LOUD (maximum) signal.
If the distance between the speakers is 15 meters, find all positions where a detector could be placed and receive a WEAK (minimal) signal.
Related Documents
Lab:
Labs -
Directions: Constructive and Destructive Interference
Labs -
Doppler Effect: Source Moving
Labs -
Frequency of Vibrating Strings
Labs -
Illuminance by a Light Source
Labs -
Inertial Mass
Labs -
Interference Shading
Labs -
Pipe Music
Labs -
Relationship Between Tension in a String and Wave Speed
Labs -
Relationship Between Tension in a String and Wave Speed Along the String
Labs -
Ripple Tank Checklists
Labs -
Ripple Tank Checklists
Labs -
Ripple Tank Sample Solutions
Labs -
Ripple Tank Student Involvement Sheet
Labs -
Simple Pendulums: Class Data
Labs -
Simple Pendulums: LabPro Data
Labs -
Speed of a Wave Along a Spring
Labs -
Speed of Sound in Air
Labs -
Speed of Sound in Copper
Labs -
Video: Law of Reflection
Labs -
Video: Law of Reflection Sample Diagram
Resource Lesson:
RL -
Barrier Waves, Bow Waves, and Shock Waves
RL -
Beats: An Example of Interference
RL -
Interference of Waves
RL -
Introduction to Sound
RL -
Law of Reflection
RL -
Physical Optics - Thin Film Interference
RL -
Resonance in Pipes
RL -
Resonance in Strings
RL -
Ripple Tank Video Guides
RL -
SHM Equations
RL -
Simple Harmonic Motion
RL -
Sound Level Intensity
RL -
Speed of Waves Along a String
RL -
The Doppler Effect
RL -
Vibrating Systems - Simple Pendulums
RL -
Vibration Graphs
RL -
Wave Fundamentals
RL -
Waveform vs Vibration Graphs
REV -
Orbitals
Review:
REV -
Chapter 26: Sound
REV -
Honors Review: Waves and Introductory Skills
REV -
Physics I Review: Waves and Introductory Skills
REV -
Sound
REV -
Waves and Sound
REV -
Waves and Sound
Worksheet:
APP -
Echo Chamber
APP -
The Dog-Eared Page
CP -
Light Properties
CP -
Reflection
CP -
Shock Waves
CP -
Sound
CP -
Waves and Vibrations
NT -
Apparent Depth
NT -
Atmospheric Refraction
NT -
Concert
NT -
Light vs Sound Waves
NT -
Shock Cone
NT -
Sound Waves
NT -
Standing Waves
WS -
Beats
WS -
Beats, Doppler, Resonance Pipes, and Sound Intensity
WS -
Counting Vibrations and Calculating Frequency/Period
WS -
Doppler - A Challenge Problem
WS -
Doppler Effect
WS -
Fixed and Free-end Reflections
WS -
Fundamental Wave Terms
WS -
Illuminance 1
WS -
Illuminance 2
WS -
Interference: In-phase Sound Sources
WS -
Lab Discussion: Inertial and Gravitational Mass
WS -
More Practice with Resonance in Pipes
WS -
More Practice with the Doppler Practice
WS -
Practice with Resonance in Pipes
WS -
Practice with the Doppler Effect
WS -
Practice: Speed of a Wave Along a String
WS -
Pulse Superposition: Interference
WS -
Ripple Tank Review
WS -
Sound Vocabulary
WS -
Speed of Sound
WS -
Speed of Sound (Honors)
WS -
Standing Wave Patterns #1
WS -
Standing Wave Patterns #2
WS -
Standing Wave Patterns #3
WS -
Standing Wave Patterns #4
WS -
Vibrating Systems - Period and Frequency
WS -
Wave Phenomena Reading Guide
WS -
Wave Pulses
WS -
Waveform and Vibration Graphs #1
WS -
Waveform and Vibration Graphs #2
TB -
25A: Introduction to Waves and Vibrations
TB -
25B: Vibrations and Waves
TB -
25C: Wave Speed
TB -
25D: Interference
TB -
25E: Doppler
TB -
25F: Doppler Effect (continued)
TB -
26B: Speed of Sound
TB -
26C: Resonance
TB -
26D: Beats
TB -
26E: Decibels
TB -
27A: Light Properties
TB -
Decibels and Sound Intensity #1
TB -
Decibels and Sound Intensity #2
TB -
Interference Re-examined
TB -
Refraction Phenomena Reading Questions
TB -
Sound: Mixed Practice
TB -
Waves and Vibrations
PhysicsLAB
Copyright © 1997-2024
Catharine H. Colwell
All rights reserved.
Application Programmer
Mark Acton